Monotone iterative technique for nonlocal fractional differential equations with finite delay in Banach space
نویسندگان
چکیده
منابع مشابه
Monotone iterative technique for nonlocal fractional differential equations with finite delay in a Banach space
In this paper, we extend a monotone iterative technique for nonlocal fractional differential equations with finite delay in an ordered Banach space. By using the monotone iterative technique, theory of fractional calculus, semigroup theory and measure of noncompactness, we study the existence and uniqueness of extremal mild solutions. An example is presented to illustrate the main result.
متن کاملMonotone Iterative Technique for Fractional Evolution Equations in Banach Spaces
We investigate the initial value problem for a class of fractional evolution equations in a Banach space. Under some monotone conditions and noncompactness measure conditions of the nonlinearity, the well-known monotone iterative technique is then extended for fractional evolution equations which provides computable monotone sequences that converge to the extremal solutions in a sector generate...
متن کاملGeneral uniqueness and monotone iterative technique for fractional differential equations
In this paper, the general existence and uniqueness result is proved which exhibits the idea of comparison principle. This result is also valid for fractional differential equations in a Banach space. The well-known monotone iterative technique is then extended for fractional differential equations which provides computable monotone sequences that converge to the extremal solutions in a sector ...
متن کاملMonotone Iterative Technique for Finite Systems of Nonlinear Riemann-liouville Fractional Differential Equations
Comparison results of the nonlinear scalar Riemann-Liouville fractional differential equation of order q, 0 < q ≤ 1, are presented without requiring Hölder continuity assumption. Monotone method is developed for finite systems of fractional differential equations of order q, using coupled upper and lower solutions. Existence of minimal and maximal solutions of the nonlinear fractional different...
متن کاملPeriodicity in a System of Differential Equations with Finite Delay
The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations
سال: 2015
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2015.1.9